Copolymerization of Parylene C and Parylene F to Enhance Adhesion and Thermal Stability without Coating Performance Degradation

Author:

Xu Han12,Yang Zhou23,Guo Yechang2,Xu Qingmei2,Dou Songtao2,Zhang Pan2,Jin Yufeng14,Kang Jiajie3ORCID,Wang Wei245

Affiliation:

1. Peking University Shenzhen Graduate School, Peking University, Shenzhen 518055, China

2. School of Integrated Circuits, Peking University, Beijing 100871, China

3. School of Engineering and Technology, China University of Geosciences (Beijing), Beijing 100083, China

4. National Key Lab of Micro/Nano Fabrication Technology, Beijing 100871, China

5. Beijing Advanced Innovation Center for Integrated Circuits, Beijing 100871, China

Abstract

Parylene C has been widely used in the fields of microelectromechanical systems (MEMS) and electronic device encapsulation because of its unique properties, such as biocompatibility and conformal coverage. However, its poor adhesion and low thermal stability limit its use in a wider range of applications. This study proposes a novel method for improving the thermal stability and enhancing the adhesion between Parylene and Si by copolymerizing Parylene C with Parylene F. The successful preparation of Parylene copolymer films containing different ratios of Parylene C and Parylene F was confirmed using Fourier-transform infrared spectroscopy and surface energy calculations. The proposed method resulted in the copolymer film having an adhesion 10.4 times stronger than that of the Parylene C homopolymer film. Furthermore, the friction coefficients and cell culture capability of the Parylene copolymer films were tested. The results indicated no degradation compared with the Parylene C homopolymer film. This copolymerization method significantly expands the applications of Parylene materials.

Funder

National Natural Science Foundation of China

Pre-Research Program in National 14th Five-Year Plan

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3