Processing, Characterization and Disintegration Properties of Biopolymers Based on Mater-Bi® and Ellagic Acid/Chitosan Coating

Author:

Villegas Carolina1,Martínez Sara1,Torres Alejandra1,Rojas Adrián1ORCID,Araya Rocío1,Guarda Abel1,Galotto María José1

Affiliation:

1. Center for Packaging Innovation (LABEN), Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Technology Faculty, University of Santiago de Chile (USACH), Santiago 9170201, Chile

Abstract

Among the most promising synthetic biopolymers to replace conventional plastics in numerous applications is MaterBi® (MB), a commercial biodegradable polymer based on modified starch and synthetic polymers. Actually, MB has important commercial applications as it shows interesting mechanical properties, thermal stability, processability and biodegradability. On the other hand, research has also focused on the incorporation of natural, efficient and low-cost active compounds into various materials with the aim of incorporating antimicrobial and/or antioxidant capacities into matrix polymers to extend the shelf life of foods. Among these is ellagic acid (EA), a polyphenolic compound abundant in some fruits, nuts and seeds, but also in agroforestry and industrial residues, which seems to be a promising biomolecule with interesting biological activities, including antioxidant activity, antibacterial activity and UV-barrier properties. The objective of this research is to develop a film based on commercial biopolymer Mater-Bi® (MB) EF51L, incorporating active coating from chitosan with a natural active compound (EA) at two concentrations (2.5 and 5 wt.%). The formulations obtained complete characterization and were carried out in order to evaluate whether the incorporation of the coating significantly affects thermal, mechanical, structural, water-vapor barrier and disintegration properties. From the results, FTIR analysis yielded identification, through characteristic peaks, that the type of MB used is constituted by three polymers, namely PLA, TPS and PBAT. With respect to the mechanical properties, the values of tensile modulus and tensile strength of the MB-CHI film were between 15 and 23% lower than the values obtained for the MB film. The addition of 2.5 wt.% EA to the CHI layer did not generate changes in the mechanical properties of the system, whereas a 5 wt.% increase in ellagic acid improved the mechanical properties of the CHI film through the addition of natural phenolic compounds at high concentrations. Finally, the disintegration process was mainly affected by the PBAT biopolymer, causing the material to not disintegrate within the times indicated by ISO 20200.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3