Soy Protein/Polyvinyl-Alcohol (PVA)-Based Packaging Films Reinforced by Nano-TiO2

Author:

Tian Xueying1ORCID,Chen Zhizhou12,Lu Xiaomeng1,Mu Jianlou1,Ma Qianyun1ORCID,Li Xiaoyuan1

Affiliation:

1. College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China

2. College of Mechanical and Electrical Engineering, Hebei Agricultural University, Baoding 071000, China

Abstract

This work was investigated to prepare a reinforcing composite packaging film composited of soy protein/polyvinyl alcohol (PVA) and nano-TiO2. First, different film compositions were designed by the particle size of nano-TiO2, concentration of nano-TiO2, concentration of polyvinylpyrrolidone (PVP, a dispersing agent for nano-TiO2), and pH of film casting solution. Then, the film composition that yielded the optimal physical properties was identified using orthogonal array design single-factor experiments, considering its physical properties, including tensile strength, elongation, water absorption, water vapor transmission, oxygen permeation, thermal property, and film morphology. The results displayed that the optimal film composition was (1) soy protein/PVA film with 2.5 wt% nano-TiO2, (2) 30 nm nano-TiO2 particle size, (3) 1.5 wt% PVP, and (4) pH 6.0 of film-forming solution. It yielded tensile strength of 6.77 MPa, elongation at break rate of 58.91%, and water absorption of 44.89%. Last, the films were characterized by scanning electron microscope (SEM) and differential scanning calorimetry (DSC). SEM analysis showed that compared with the film without TiO2, the film containing TiO2 has a smoother surface, and DSC determined that adding nano-TiO2 can improve the thermostability of soy protein/PVA film. Therefore, the film prepared in this paper is expected to provide a new theoretical basis for use in the packaging industry.

Funder

Science and Technology Project of Hebei Education Department

Postgraduate Demonstration Course Project Construction Program of Hebei Province

Open Subject of Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3