The Effect of Sub- and Near-Critical Carbon Dioxide Assisted Manufacturing on Medical Thermoplastic Polyurethane

Author:

Baru Sarn-ii1,Matthews Siobhan2,Marchese Eric3,Walsh Philip1,Coffey Austin14

Affiliation:

1. Convergent Technologies Research Group (CTRG), South East Technological University, X91 K0EK Waterford, Ireland

2. SCF Processing Ltd., A92 AW74 Drogheda, Ireland

3. Vascular Research and Development, Teleflex Inc., Wyomissing, PA 19610, USA

4. Faculty of Engineering, Thammasat University, Pathum Thani 12120, Thailand

Abstract

Incorporating thermally labile active pharmaceutical ingredients for manufacturing multifunctional polymeric medical devices is restricted due to their tendency to degrade in the hot melt extrusion process. In this study, the potential of sub- and near-critical carbon dioxide (CO2) as a reversible plasticiser was explored by injecting it into a twin-screw hot melt extrusion process of Pellethane thermoplastic polyurethane to decrease its melt process temperature. Its morphological, throughput, thermal, rheological, and mechanical performances were also evaluated. The resultant extrudates were characterised using scanning electron microscopy, parallel plate rotational rheometer, differential scanning calorimetry, thermogravimetric analysis, and tensile testing. The process temperature decreased from 185 to 160 °C. The rheology indicated that the reduction in melt viscosity was from 690 Pa.s to 439 Pa.s (36%) and 414 Pa.s (40%) at 4.14 and 6.89 MPa, respectively. The tensile modulus in the elastomeric region is enhanced from 5.93 MPa, without CO2 to 7.71 MPa with CO2 at both 4.14 and 6.89 MPa. The results indicate that the employment of both sub- and near-critical CO2 as a processing aid is a viable addition to conventional hot melt extrusion and that they offer more opportunities for thermosensitive drugs to be more stable in the molten stream of Pellethane thermoplastic polyurethane.

Funder

the Irish Research Council Enterprise Partnership Scheme Postgraduate Scholarship (IRC-EPS) and Teleflex Inc.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3