Study on Press Formability and Properties of UV-Curable Polyurethane Acrylate Coatings with Different Reactive Diluents

Author:

Choi Woo-Chan1,Gavande Vishal2ORCID,Kim Dong-Yun2,Lee Won-Ki2ORCID

Affiliation:

1. Central R&D Center, Dongkuk Steel Mill, Nam-gu, Busan 48481, Republic of Korea

2. Division of Polymer Engineering, Pukyong National University, Busan 48513, Republic of Korea

Abstract

UV-curable coatings have numerous advantages, including environmental sustainability due to 100% solid content, economic feasibility attributable to relatively fast curing time, decent appearance, mechanical properties, chemical resistance, and abrasion resistance. However, UV-curable polyurethane acrylate coatings on metals apparently restrict their engineering applications owing to low mechanical properties and poor thermal stability, giving UV-curable coatings less flexibility and formability. In this study, we evaluated the property change of films according to the type of reactive diluents that lowers the viscosity of UV-curing coatings for pre-coated metal and has a substantial effect on the curing rate, viscoelastic properties, adhesive properties, and flexibility of the film. Moreover, there are many changes in the properties of coatings according to varied curing conditions in order to evaluate the oxygen inhibition phenomenon during the curing process in the atmosphere. In particular, to evaluate the effect of reactive diluents on forming formability, which is the most crucial property for the pre-coated metal, this study used conventional formability tests, such as t-bending or the Erichsen test. Moreover, a cross-die cup drawing mold with a similar form as failure and Safety Zone was utilized in order to obtain clearer information on its actual formability. The analysis on the effect of failure and safety zone on the material used in press forming was conducted by assessing limit punch height and forming a limit diagram of the manufactured film according to varied reactive diluents.

Funder

Research Funds of Ministry of Trade, Industry and Energy

Busan Metropolitan City and Busan Institute for Talent & Lifelong Education

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3