Fabrication of 3D Printed Polylactic Acid/Polycaprolactone Nanocomposites with Favorable Thermo-Responsive Cyclic Shape Memory Effects, and Crystallization and Mechanical Properties

Author:

Liu Hao1ORCID,Li Chengdi1ORCID,Chen Simin1,Chen Ping1,Li Jinbo1,Jian Huihua1,Guo Guoyi1,Chen Xiao1ORCID,Zhu Xiaofeng1,Wu Jun1

Affiliation:

1. Xinyu Key Laboratory of Materials Technology and Application for Intelligent Manufacturing, School of Mechanical and Electrical Engineering, Xinyu University, Xinyu 338004, China

Abstract

In this work, 3D printed polylactic acid (PLA)/polycaprolactone (PCL) nanocomposites with favorable thermo-responsive cyclic shape memory effects (SMEs) and crystallization and mechanical properties were fabricated using a two-step method. First, an isocyanate-terminated PCL diol (PCL-NCO) was synthesized through the reaction between isocyanate groups of hexamethylene diisocyanate and active hydroxyl groups of PCL diol, and its physicochemical properties were characterized. A PLA/PCL blend with a PCL content of 50 wt% was fabricated via fused filament fabrication (FFF) 3D printing, and the influence of the PCL-NCO on the SME of the PLA/PCL blend was studied. The results indicated that the PCL-NCO significantly improved the cyclic shape memory performance of 3D printed PLA/PCL blends and was proved to be an effective interface compatibilizer for the blend system. Subsequently, the structure and properties of 3D printed PLA/PCL nanocomposites were investigated in detail by adding cellulose nanocrystal-organic montmorillonite (CNC-OMMT) hybrid nanofillers with different contents. It was found that the hybrid nanofillers greatly enhanced crystallization and mechanical properties of the nanocomposites due to adequate dispersion. The modification of the PLA/PCL blend and the preparation of the 3D printed nanocomposite can not only prolong the service life of a shape memory polymer product, but also broaden its application scope in advanced fields.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangxi

Science and Technology Project of Jiangxi Educational Bureau

Science Technology Project of Jiujiang City

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3