Affiliation:
1. School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
Abstract
Obvious volume change and the dissolution of polysulfide as well as sluggish kinetics are serious issues for the development of high performance metal sulfide anodes for sodium-ion batteries (SIBs), which usually result in fast capacity fading during continuous sodiation and desodiation processes. In this work, by utilizing a Prussian blue analogue as functional precursors, small Fe-doped CoS2 nanoparticles spatially confined in N-doped carbon spheres with rich porosity were synthesized through facile successive precipitation, carbonization, and sulfurization processes, leading to the formation of bayberry-like Fe-doped CoS2/N-doped carbon spheres (Fe-CoS2/NC). By introducing a suitable amount of FeCl3 in the starting materials, the optimal Fe-CoS2/NC hybrid spheres with the designed composition and pore structure exhibited superior cycling stability (621 mA h g−1 after 400 cycles at 1 A g−1) and improved the rate capability (493 mA h g−1 at 5 A g−1). This work provides a new avenue for the rational design and synthesis of high performance metal sulfide-based anode materials toward SIBs.
Funder
Natural Science Foundation of Zhejiang Province
Fundamental Research Funds of Zhejiang Sci-Tech University
National Natural Science Foundation of China
Subject
Polymers and Plastics,General Chemistry
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献