Synthesis, Characterization, and Application of Dichloride (5,10,15,20-Tetraphenylporphyrinato) Antimony Functionalized Pectin Biopolymer to Methylene Blue Adsorption

Author:

Soury Raoudha1ORCID,Alhar Munirah Sulaiman Othman1ORCID,Jabli Mahjoub2ORCID

Affiliation:

1. Department of Chemistry, College of Science, University of Hail, Ha’il 81451, Saudi Arabia

2. Department of Chemistry, College of Science Al-Zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia

Abstract

In this work, pectin biopolymers were functionalized with dichloride (5,10,15,20-tetraphenylporphyrinato) antimony [Sb(TPP)Cl2] at various compositions (0.5%, 1%, and 2%). The prepared compounds were characterized with several analytical methods, including X-ray fluorescence (XRF) spectrometry, Fourier-transform infrared spectroscopy (FT-IR), electrospray ionization mass spectrometry (EIS), scanning electron microscope (SEM), X-ray diffraction (XRD), and thermogravimetric-differential thermal (TGA/DTG) analysis. The XRF technique evidenced the presence of Sb metal in the composite beads. FT-IR suggested that the interaction between pectin and the [Sb(TPP)Cl2] complex was assured by inter- and intramolecular C-H⋯O, C-H⋯Cl hydrogen bonds and weak C–H⋯Cg π interactions (Cg is the centroid of the pyrrole and phenyl rings). The morphological features of the prepared polymeric beads were affected by the addition of [Sb(TPP)Cl2] particles, and the surface became rough. The thermal residual mass for the composite beads (29%) was more important than that of plain beads (23%), which confirmed the presence of inorganic matter in the modified polymeric beads. At 20 °C, the highest adsorption amounts of methylene blue were 39 mg/g and 68 mg/g for unmodified pectin and pectin-[Sb(TPP)Cl2] beads, respectively. The adsorption mechanism correlated well with the kinetic equation of the second order and the isotherm of Freundlich. The prepared polymeric beads were characterized as moderate-to-good adsorbents. The calculated thermodynamic parameters demonstrated an exothermic and thermodynamically nonspontaneous mechanism.

Funder

Initiative of Institutional Funding at University of Ha’il—Saudi Arabia

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3