Curing Behavior of UV-Initiated Surface-Modified Nano-TiO2/Epoxy Resin Prepolymers and the Properties of Cured Composites

Author:

Xia Renkun1ORCID,Xi Jiaojiao2,Zhang Zhiyun2,He Yannan2,Yu Zhiqiang2ORCID

Affiliation:

1. Department of Chemistry, Fudan University, Shanghai 200433, China

2. Department of Material Science, Fudan University, Shanghai 200433, China

Abstract

Nano-titanium dioxides (nano-TiO2) surface modified with isopropyl tri(dioctylpyrophosphate) titanate (NDZ-201), a titanate coupling agent, and 3-glycidoxypropyltrimethoxysilane (KH-560), a silane coupling agent, were separately mixed with bisphenol A epoxy resin (DEGBA) prepolymer and then cured using a UV-normal temperature synergistic curing process. Then, the isothermal curing process of the system was investigated by differential scanning calorimetry (DSC). The relationship between the organization structures, mechanical properties, and heat resistance properties of the cured composites and material formulation was studied, and the DSC results showed that the addition of nano-TiO2 reduced the curing reaction rate constant k1 and increased the k2 of the prepolymer, while the activation energy of the curing reaction after UV irradiation Ea1 decreased, and the activation energy in the middle and later periods Ea2 increased. The characterization results of the composite material showed that nano-TiO2 as a scattering agent reduced the photoinitiation efficiency of UV light, and due to its obvious agglomeration tendency in the epoxy resin, the mechanical properties of the composite material were poor. The dispersibility of the coupling-agent-modified nano-TiO2 in the epoxy resin was greatly enhanced, and the mechanical and heat resistance properties of the composite material improved remarkably. The comparison results of the two coupling agents showed that NDZ-201 had better performance in increasing the impact strength by 6.8% (minimum value, the same below) and the maximum thermal decomposition rate temperature by 4.88 °C of the composite, while KH-560 improved the tensile strength by 7.3% and the glass transition temperature (Tg) by 3.34 °C of the composite.

Funder

National Defense Foundation of China

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3