Abstract
Curcumin is an extract of turmeric (Curcuma longa) which possesses anti-inflammatory, anti-cancer and wound-healing effects and has been used as an active compound in biomedical research for many years. However, its poor solubility presents challenges for its use in drug delivery systems. A modified nanogel delivery system, with PNIPAM and β-cyclodextrin grafted onto hyaluronic acid (PNCDHA), was utilized to enhance the solubility. The polymer was characterized by NMR, and the inclusion complex between curcumin and β-cyclodextrin was confirmed by FTIR. The potential of this PNCDHA polymer complex as a drug delivery vehicle was supported by a curcumin encapsulation efficiency of 93.14 ± 5.6% and the release of encapsulated curcumin at 37 °C. At a concentration of 0.5% w/v in water, PNCDHA nanogels were biocompatible with fibroblast cell line (L929) up to a curcumin concentration of 50 µM. There was a direct concentration between curcumin loading and cellular internalization. A more detailed study of the cellular internalization of PNCDHA nanogel should be considered in order to clarify cellular delivery mechanisms and to assess how its viability as a carrier may be optimized.
Funder
Thailand Science research and Innovation Fund Chulalongkorn University
National Natural Science Foundation of China
the Asahi Glass Foundation
The 100th Anniversary Chulalongkorn University for Doctoral Scholarship
Subject
Polymers and Plastics,General Chemistry
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献