Enhancement of the Fragility Capacity of RC Frames Using FRPs with Different Configurations at Joints

Author:

Jafari Saeed1,Mahini Seyed Saeed2ORCID

Affiliation:

1. School of Computing, Engineering and Built Environment, Glasgow Caledonian University, London E1 6PX, UK

2. National Center for Timber Durability and Design Life, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia

Abstract

This paper reports the results of an investigation into the effectiveness of different lengths of Fiber-Reinforced Polymer (FRP) sheets in retrofitting the joints of Reinforced Concrete (RC) frames to improve the fragility function of ordinary RC frames. Several 8-storey RC buildings were investigated through FE modelling. The accuracy of the FE models was verified using peer research results. Fragility curves of FRP-retrofitting joints of two referenced RC frames were carried out by OpenSees, through Incremental Dynamic Analysis (IDA) analysis under 22 far-field earthquake records from 0.1 g to 4.0 g (with 0.1 g interments), based on FEMA P-695. Two types of retrofitting methods, web and flange bonding, were modeled and studied. The results showed that the fragility capacity of the retrofitted RC frames was significantly improved. Moreover, frames with longer sheets of FRP showed increased performance. In the complete state, the range of probability of exceedance grew from 2–2.5 g to 3–3.5 g (nearly 1 g), whereas, in the minor state, this growth was nearly 0.05 g. However, the fragility function of the flange-bonding was enhanced at a higher rate compared with that of the web-bonding RC frames. Carbon Fiber-Reinforced Polymer (CFRP) and Glass Fiber-Reinforced Polymer (GFRP) materials improved the probability of exceedance of the complete state from 3 g to 4.5 g and 4.8 g in flange bonding frames. This enhancement for both types of frames was more significant when joints were retrofitted with 400 and 500 mm compared with 600, 700, and 800 mm. The midpoint of the PGA at the complete damage state in the web-bonding frame increased from 1.076 g to 1.664 g and in the flange-bonding frame retrofitted with GFRP and CFRP raised from 1.551 g to 2.769 and 3.076, respectively. The collapse margin ratio (CMR) indicates an acceptable improvement in the retrofitted frames. Overall, the rate of enhancement in fragility function from the original frame to the frame with 500 mm FRP was significant; however, the slope of this rate declined for longer FRP sheets. The fragility performance improvement resulted in controlling plastic hinging by FRPs.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3