“Green” PBX Formulations Based on High Explosives (RDX and HMX) and Water-Soluble pH-Sensitive Polymeric Binders

Author:

Rotariu Traian1ORCID,Moldovan Andreea Elena1ORCID,Toader Gabriela1ORCID,Diacon Aurel12ORCID,Rusen Edina2ORCID,Ginghina Raluca Elena3ORCID,Iorga Ovidiu3,Botiș Horia Răzvan4,Klapötke Thomas5

Affiliation:

1. Military Technical Academy “Ferdinand I”, 39–49 George Cosbuc Boulevard, 050141 Bucharest, Romania

2. Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1–7 Gh. Polizu Street, 011061 Bucharest, Romania

3. Research and Innovation Center for CBRN Defense and Ecology, 225 Olteniţei Ave., 041327 Bucharest, Romania

4. Compania Națională ROMARM S.A., 5 Timișoara Boulevard, 061301 Bucharest, Romania

5. Department of Chemistry, Ludwig-Maximilian University of Munich, Butenandtstr. 5–13, 81377 Munich, Germany

Abstract

The increasingly harsher and more complex international and European environmental legislation drives the current development of “greener” energetics materials and munitions. The aerospace and defense industries rely on extensive research in the formulation and scale-up production of polymer-bonded explosives (PBX). In this context, this paper aims to present a versatile method for obtaining “green” PBX formulations based on two high explosives (hexogen (RDX) and octogen (HMX)) and acrylic acid—ethyl acrylate copolymeric binders. This study developed an innovative “eco-friendly” technology for coating the RDX and HMX crystals, allowing straightforward and safer manufacture of PBX, avoiding the use of traditional organic solvents. At the same time, these polymeric binders are soluble in water at a slightly alkaline pH and insoluble at acidic or neutral pH, thus ensuring a safer manipulation of the energetic materials during their entire life cycle and a facile recovery of the explosive in its original shape and morphology in demilitarization. The PBX formulations were characterized via specific analytical tools to evaluate the influence of their composition on the safety and performance characteristics: scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FT-IR), alkaline pH solubility tests, differential thermal analysis (DTA), impact sensitivity test (BAM Fall Hammer Test), friction sensitivity test (BAM Friction Test), electrostatic sensitivity test (ESD), vacuum stability test, small scale shock reactivity test (SSRT), detonation velocity test. The “green” PBX formulations obtained through a simple and innovative coating method, based on the polymeric binders’ adjustable water solubility, demonstrated remarkable energetic performances and a facile recovery of the explosive crystals by the dissolution of the polymeric binder at pH 11 and 30 °C.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3