Coupling Effect of LDPE Molecular Chain Structure and Additives on the Rheological Behaviors of Cable Insulating Materials

Author:

Li Jiacai1ORCID,Si Zhicheng1,Shang Kai1ORCID,Wu Yifan1,Feng Yang1,Wang Shihang1,Li Shengtao1

Affiliation:

1. State Key Laboratory of Electrical Insulation and Power Equipment, Department of Electrical Engineering, Xi’an Jiaotong University, Xi’an 710049, China

Abstract

The rheological behaviors of low-density polyethylene doped with additives (PEDA) determine the dynamic extrusion molding and structure of high-voltage cable insulation. However, the coupling effect of additives and molecular chain structure of LDPE on the rheological behaviors of PEDA is still unclear. Here, for the first time, the rheological behaviors of PEDA under uncross-linked conditions are revealed by experiment and simulation analysis, as well as rheology models. The rheology experiment and molecular simulation results indicate that additives can reduce the shear viscosity of PEDA, but the effect degree of different additives on rheological behaviors is determined by both chemical composition and topological structure. Combined with experiment analysis and the Doi–Edwards model, it demonstrates that the zero-shear viscosity is only determined by LDPE molecular chain structure. Nevertheless, different molecular chain structures of LDPE have different coupling effects with additives on the shear viscosity and non-Newtonian feature. Given this, the rheological behaviors of PEDA are predominant by the molecular chain structure of LDPE and are also affected by additives. This work can provide an important theoretical basis for the optimization and regulation of rheological behaviors of PEDA materials used for high-voltage cable insulation.

Funder

National Natural Science Foundation of China

Science and Technology Project of State Grid Corporation of China

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3