Assessing Crimp of Fibres in Random Networks with 3D Imaging

Author:

Hewavidana Yasasween1ORCID,Balci Mehmet N.2,Gleadall Andrew1,Pourdeyhimi Behnam3,Silberschmidt Vadim V.1ORCID,Demirci Emrah1

Affiliation:

1. Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough LE11 3TU, UK

2. Department of Mechanical Engineering, Hacettepe University, Ankara 06800, Turkey

3. The Nonwovens Institute, North Carolina State University, 1010 Main Campus Dr, Raleigh, NC 27606, USA

Abstract

The analysis of fibrous structures using micro-computer tomography (µCT) is becoming more important as it provides an opportunity to characterise the mechanical properties and performance of materials. This study is the first attempt to provide computations of fibre crimp for various random fibrous networks (RFNs) based on µCT data. A parametric algorithm was developed to compute fibre crimp in fibres in a virtual domain. It was successfully tested for six different X-ray µCT models of nonwoven fabrics. Computations showed that nonwoven fabrics with crimped fibres exhibited higher crimp levels than those with non-crimped fibres, as expected. However, with the increased fabric density of the non-crimped nonwovens, fibres tended to be more crimped. Additionally, the projected fibre crimp was computed for all three major 2D planes, and the obtained results were statistically analysed. Initially, the algorithm was tested for a small-size, nonwoven model containing only four fibres. The fraction of nearly straight fibres was computed for both crimped and non-crimped fabrics. The mean value of the fibre crimp demonstrated that fibre segments between intersections were almost straight. However, it was observed that there were no perfectly straight fibres in the analysed RFNs. This study is applicable to approach employing a finite-element analysis (FEA) and computational fluid dynamics (CFD) to model/analyse RFNs.

Funder

The Nonwovens Institute of North Carolina State University

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3