Preparation of Bio-Foam Material from Steam-Exploded Corn Straw by In Situ Esterification Modification

Author:

Pan Yu12,Zhou Yufan12,Du Xiaoqing12,Xu Wangjie12,Lu Yuan12,Wang Feng12,Jiang Man13

Affiliation:

1. Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Chengdu 610031, China

2. School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China

3. School of Chemistry, Southwest Jiaotong University, Chengdu 610031, China

Abstract

In this work, we engineered a corn-straw-based bio-foam material under the inspiration of the intrinsic morphology of the corn stem. The explosion pretreatment was applied to obtain a fibrillated cellulose starting material rich in lignin. The in situ esterification of cellulose was adopted to improve the cross-linking network of the as-developed foam bio-material. The esterification of lignin was observed in the same procedure, which provides a better cross-linking interaction. The esterified corn-straw-derived bio-foam material showed excellent elastic resilience performance with an elastic recovery ratio of 83% and an elastic modulus of 20 kPa. Meanwhile, with surface modification by hexachlorocyclotriphosphazene-functionalized lignin as the flame retardant (Lig-HCCP), the as-obtained bio-foam material demonstrated quite a good flame retardancy (with 27.3% of the LOI), as well as a heat insulation property. The corn-straw-derived bio-foam material is prospected to be a potential substitution packaging material for widely used petroleum-derived products. This work provides a new value-added application of the abundant agricultural straw biomass resources.

Funder

Sichuan Provincial Natural Science Foundation Project

Sichuan Major Science and Technology Project

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3