Study on the Mechanism and Experiment of Styrene Butadiene Rubber Reinforcement by Spent Fluid Catalytic Cracking Catalyst

Author:

Shan Tilun123,Bian Huiguang3,Zhu Donglin1,Wang Kongshuo1ORCID,Wang Chuansheng123,Tian Xiaolong123

Affiliation:

1. National Engineering Laboratory of Advanced Tire Equipment and Key Materials, Qingdao University of Science and Technology, Qingdao 266061, China

2. Shandong Key Laboratory of Advanced Manufacturing of Polymer Materials, Qingdao 266061, China

3. College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, China

Abstract

Spent Fluid Catalytic Cracking (FCC) Catalyst is a major waste in the field of the petroleum processing field, with a large output and serious pollution. The treatment cost of these waste catalysts is high, and how to achieve their efficient reuse has become a key topic of research at home and abroad. To this end, this paper conducted a mechanistic and experimental study on the replacement of some carbon blacks by spent FCC catalysts for the preparation of rubber products and explored the synergistic reinforcing effect of spent catalysts and carbon blacks, in order to extend the reuse methods of spent catalysts and reduce the pollution caused by them to the environment. The experimental results demonstrated that the filler dispersion and distribution in the compound are more uniform after replacing the carbon black with modified spent FCC catalysts. The crosslinking density of rubber increases, the Payne effect is decreased, and the dynamic mechanical properties and aging resistance are improved. When the number of replacement parts reached 15, the comprehensive performance of the rubber composites remained the same as that of the control group. In this paper, the spent FCC catalysts modified by the physical method instead of the carbon-black-filled SBR can not only improve the performance of rubber products, but also can provide basic technical and theoretical support to realize the recycling of spent FCC catalysts and reduce the environmental pressure. The feasibility of preparing rubber composites by spent catalysts is also verified.

Funder

the National Natural Science Foundation of China

Natural Science Foundation of Shandong Province Key Projects

Qingdao Science and Technology Benefit People Demonstration Guide Special Project

Shandong postdoctoral innovation project

Qingdao Postdoctoral Applied Research Project

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3