Synergistic Effect of Activated Carbon, NiO and Al2O3 on Improving the Thermal Stability and Flame Retardancy of Polypropylene Composites

Author:

Shao Mingqiang1,Li Ying2,Shi Yiran1,Liu Jiangtao1,Xue Baoxia1ORCID,Niu Mei1

Affiliation:

1. College of Textile Engineering, Taiyuan University of Technology, Taiyuan 030600, China

2. College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, China

Abstract

It is difficult to enhance the char yields of polypropylene (PP) due to the preferential complete combustion. Successful formation of abundant char layer structure of PP upon flammability was obtained due to the synergistic effect of NiO, Al2O3 and activated carbon (AC). From characterization of scanning electron microscopy (SEM) and transmission electron microscopy (TEM), it was revealed that the microstructure of residual char contained large amount of carbon nanotubes. Compared to the modification of AC, NiO and Al2O3 alone, the combination of AC, NiO and Al2O3 dramatically promotes the charring ability of PP. In the case of AC and NiO, NiO plays a role of dehydrogenation, resulting in the degradation product, while AC mainly acts as carbonization promoter. The addition of Al2O3 results in higher dispersion and smaller particle size of NiO, leading to greater exposure of active sites of NiO and higher dehydrogenation and carbonization activity. Compared to the neat PP, the decomposition temperature of the PP modified by combined AC, NiO and Al2O3 was increased by 90 ℃. The yield of residual char of AC-5Ni-Al-PP reached as high as 44.6%. From the cone calorimeter test, the heat release rate per unit area (HRR) and total heat release per unit area (THR) of PP composite follows the order AC-5Ni-Al-PP < AC-10Ni-Al-PP < AC-Ni-PP < AC-15Ni-Al-PP < AC-1Ni-Al-PP. Compared to the neat PP, the peak of HRR declined by 73.8%, 72.7%, 71.3%, 67.6% and 62.5%, respectively.

Funder

Foundation of Taiyuan University of Technology

Shanxi Scholarship Council of China

Science and technology innovation project of colleges and universities in Shanxi Province

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3