Experimental Study on Tin Slag Polymer Concrete Strengthening under Compression with Metallic Material Confinement

Author:

Manda Muhamad Soffi12ORCID,Mat Rejab Mohd Ruzaimi1,Hassan Shukur Abu34,Wahit Mat Uzir34,Nurhadiyanto Didik5ORCID

Affiliation:

1. Structural Performance Material Engineering (SUPREME), Faculty of Mechanical & Automotive Engineering Technology, Universiti Malaysia Pahang, Pekan 26600, Pahang, Malaysia

2. Department of Mechanical Engineering, Polytechnic Sultan Haji Ahmad Shah (POLISAS), Semambu, Kuantan 25350, Pahang, Malaysia

3. School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Skudai, Johor Bahru 81310, Johor, Malaysia

4. Centre for Advanced Composites (CACM), Universiti Teknologi Malaysia (UTM), Skudai, Johor Bahru 81310, Johor, Malaysia

5. Department of Mechanical Engineering Education, Faculty of Engineering, Universitas Negeri Yogyakarta, Yogyakarta 55281, Indonesia

Abstract

Studies on the external strengthening of tin slag polymer concrete by fibre-reinforced plastic confinement have provided strength enhancement of tin slag polymer concrete up to 128% with carbon fibre-reinforced plastic confinement. However, the effect of metallic material confinement has yet to be studied. This article presents the experimental finding on tin slag polymer concrete strengthening through metallic material confinement under compressive loads. Machined mild steel metal tube has been employed to strengthen tin slag polymer concrete core in partial and fully confinement prior to compression testing. Through this study, compressive strength of tin slag polymer concrete short column has been enhanced with the metal tube confinement application from 59.19 MPa (unconfined) to 95.86 MPa (partial metal confinement) and 131.84 (full metal confinement) representing 61.95% and 122.74% of strength enhancement percentage. Material behaviour analysis through stress versus strain curves has revealed that the strain softening curve is modified by metal tube confinement before a fracture occurs on both partial and full metal confinement samples compared to the control sample (unconfined). In addition, the failure modes have indicated that the high ductility of metallic confinement material has effectively confined tin slag polymer concrete from sudden fracture where the metal tube in partial confinement indicates ductile expansion while the metal tube in full confinement has shown ductile crushing. In general, it was concluded that metallic material confinement on tin slag polymer concrete under compressive load has resulted in providing strength enhancement and modified the failure mode of tin slag polymer concrete. Finally, further research is recommended, especially by initiating numerical analysis to facilitate parametric studies on tin slag polymer concrete for structural material design.

Funder

University of Technology Malaysia

Universiti Malaysia Pahang

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3