The Effects of Different Molding Orientations, Highly Accelerated Aging, and Water Absorption on the Flexural Strength of Polyether Ether Ketone (PEEK) Fabricated by Fused Deposition Modeling

Author:

Miura Daisuke1,Ishida Yoshiki1ORCID,Shinya Akikazu12ORCID

Affiliation:

1. Department of Dental Materials Science, School of Life Dentistry at Tokyo, The Nippon Dental University, 1-9-20 Fujimi, Chiyoda-ku, Tokyo 102-8159, Japan

2. Turku Biomaterials Research Program, Department of Biomaterials Science, Institute of Dentistry and BioCity, University of Turku, 20500 Turku, Finland

Abstract

Rising prices are currently a problem in the world. In particular, the abnormal increases in the price of metals, which are often used in dental prosthetics, have increased the burden of dental costs on the public. There is therefore an urgent need to develop prosthetic devices made from materials that are not affected by the global situation and that have excellent biocompatibility and mechanical properties comparable to those of metals. Polyether ether ketone (PEEK) is a promising alternative to metal in dentistry. This study compared the effects of different molding orientations, highly accelerated aging, and water absorption on the flexural strength of PEEK fabricated by fused deposition modeling (FDM) and examined its potential for dental applications. The flexural strength of PEEK stacked at 0° to the molding stage (0° PF), with and without highly accelerated aging, was significantly greater than for the other molding orientations. As with PD, the maximum test load for 0° PF was measured without fracture. PEEK stacked at 45° (45° PF) and 90° (90° PF) to the molding stage easily fractured, as the applied load pulled the stacked layers. No statistically significant difference was found between the flexural strength of 45° PF and 90° PF. The flexural strength decreased under all conditions due to defects in the crystal structure of PEEK caused by highly accelerated aging.

Funder

JSPS KAKENHI

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3