Polar-Functionalized Polyethylenes Enabled by Palladium-Catalyzed Copolymerization of Ethylene and Butadiene/Bio-Based Alcohol-Derived Monomers

Author:

Zong Yanlin12,Wang Chaoqun12,Zhang Yixin1ORCID,Jian Zhongbao12ORCID

Affiliation:

1. State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, China

2. School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China

Abstract

Polar-functionalized polyolefins are high-value materials with improved properties. However, their feedstocks generally come from non-renewable fossil products; thus, it requires the development of renewable bio-based monomers to produce functionalized polyolefins. In this contribution, via the Pd-catalyzed telomerization of 1,3-butadiene and three types of bio-based alcohols (furfuryl alcohol, tetrahydrofurfuryl alcohol, and solketal), 2,7-octadienyl ether monomers including OC8-FUR, OC8-THF, and OC8-SOL were synthesized and characterized, respectively. The copolymerization of these monomers with ethylene catalyzed by phosphine–sulfonate palladium catalysts was further investigated. Microstructures of the resultant copolymers were analyzed by NMR and ATR-IR spectroscopy, revealing linear structures with incorporations of difunctionalized side chains bearing both allyl ether units and polar cyclic groups. Mechanical property studies exhibited better strain-at-break of these copolymers compared to the non-polar polyethylene, among which the copolymer E-FUR with the incorporation of 0.3 mol% displayed the highest strain-at-break and stress-at-break values of 940% and 35.9 MPa, respectively.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3