High Content of Thermoplastic Starch, Poly(butylenes adipate-co-terephthalate) and Poly(butylene succinate) Ternary Blends with a Good Balance in Strength and Toughness

Author:

Niu Zhaoyang1,Chen Fangping12,Zhang He1,Liu Changsheng12

Affiliation:

1. Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China

2. Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China

Abstract

The ternary blends of a high content of thermoplastic starch (TPS), poly(butylenes adipate-co-terephthalate) (PBAT), and poly(butylene succinate) (PBS) were first melt-compounded in a twin screw extruder. The TPS contents in ternary blends were fixed at 60 wt%. The miscibility, morphology, thermal behavior, mechanical properties, and thermal resistance of the blends were investigated. The results showed that dispersions of PBS and PBAT minor phases improved the tensile strength and elongation at break. TPS/PBS/PBAT60/10/30 formed a good balance in strength and toughness. Dynamic mechanical analysis of the blends exhibits an intermediate and peak suggesting the ternary blend is compatible. Minor phase-separated structure SEM results showed that TPS/PBS/PBAT60/10/30 blend formed a typical mixture with core−shell morphology. As the PBAT composition was increased, phase morphology changes occurred in the blends, leading to decreased values of complex viscosity, storage modulus, and loss modulus. Moreover, the thermal resistances and melt flow properties of the materials were also studied by analysis of the heat deflection temperature (HDT) and melt flow index (MFI) value in the work.

Funder

Shanghai Science and Technology Agriculture Project

National Natural Science Foundation of China

Shanghai Pujiang Program

Joint Fund for equipment pre-research of the ministry of education

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3