Development of Photoluminescent and Photochromic Polyester Nanocomposite Reinforced with Electrospun Glass Nanofibers

Author:

Abdu Mahmoud T.12ORCID,Khattab Tawfik A.3ORCID,Abdelrahman Maiada S.1ORCID

Affiliation:

1. Metallurgical Engineering Department, Faculty of Engineering, Cairo University, Giza 12613, Egypt

2. Mechanical Engineering Department, College of Engineering, University of Bisha, P.O. Box 421, Bisha 61922, Saudi Arabia

3. Dyeing, Printing and Auxiliaries Department, National Research Centre, Cairo 12622, Egypt

Abstract

A polyester resin was strengthened with electrospun glass nanofibers to create long-lasting photochromic and photoluminescent products, such as smart windows and concrete, as well as anti-counterfeiting patterns. A transparent glass@polyester (GLS@PET) sheet was created by physically immobilizing lanthanide-doped aluminate (LA) nanoparticles (NPs). The spectral analysis using the CIE Lab and luminescence revealed that the transparent GLS@PET samples turned green under ultraviolet light and greenish-yellow in the dark. The detected photochromism can be quickly reversed in the photoluminescent GLS@PET hybrids at low concentrations of LANPs. Conversely, the GLS@PET substrates with the highest phosphor concentrations exhibited sustained luminosity with slow reversibility. Transmission electron microscopic analysis (TEM) and scanning electron microscopy (SEM) were utilized to examine the morphological features of lanthanide-doped aluminate nanoparticles (LANPs) and glass nanofibers to display diameters of 7–15 nm and 90–140 nm, respectively. SEM, energy-dispersive X-ray spectroscopy (EDXA), and X-ray fluorescence (XRF) were used to analyze the luminous GLS@PET substrates for their morphology and elemental composition. The glass nanofibers were reinforced into the polyester resin as a roughening agent to improve its mechanical properties. Scratch resistance was found to be significantly increased in the created photoluminescent GLS@PET substrates when compared with the LANPs-free substrate. When excited at 368 nm, the observed photoluminescence spectra showed an emission peak at 518 nm. The results demonstrated improved hydrophobicity and UV blocking properties in the luminescent colorless GLS@PET hybrids.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3