Fatigue and Wear Performance of Autoclave-Processed and Vacuum-Infused Carbon Fibre Reinforced Polymer Gears

Author:

Bergant Zoran1,Šturm Roman1,Zorko Damijan1,Černe Borut1

Affiliation:

1. Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva 6, 1000 Ljubljana, Slovenia

Abstract

This study focuses on investigating the fatigue and wear behaviour of carbon fibre reinforced polymer (CFRP) gears, which have shown promising potential as lightweight and high-performance alternatives to conventional gears. The gears were fabricated via an autoclave process using an 8-layer composite made of T300 plain weave carbon fabric and ET445 resin and were tested in pair with a 42CrMo4 steel pinion and under nominal tooth bending stress ranging from 60 to 150 MPa. In-situ temperature monitoring was performed, using an infrared camera, and wear rates were regularly assessed. The result of the wear test indicates adhesive wear and three-body abrasion wear mechanisms between the CFRP gears and the steel counterpart. A finite element analysis was performed to examine the in-mesh contact and root stress behaviour of both new and worn gears at various loads and a specified running time. The results point to a substantial divergence from ideal meshing and stress conditions as the wear level is increased. The fatigue results indicated that the CFRP gears exhibited superior performance compared to conventional plastic and composite short-fibrous polymer gears. The described composite gear material was additionally compared with two other composite configurations, including an autoclave-cured T700S plain weave prepreg with DT120 toughened resin and a vacuum-impregnated T300 spread plain weave carbon fabric with LG 900 UV resin. The study found that the use of the T700S-DT120 resulted in additional improvements.

Funder

Slovenian Research Agency programme

post-doctoral projects

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3