Affiliation:
1. Department of Physics, College of Science, Northern Border University, Arar 73222, Saudi Arabia
Abstract
The utilization of indoor photovoltaics makes it feasible to harvest energy from artificial light sources. Although single-junction indoor photovoltaics have demonstrated exceptional efficacy when using LED lighting, there is still a need for more comprehensive testing of tandem structures. Herein, the first systematic TCAD simulation study on the potential for tandem all-polymer solar cells (all-PSCs) for indoor applications is provided. The presented all-PSCs are based on experimental work in which the top wide bandgap subcell comprises a polymer blend PM7:PIDT, while the bottom narrow bandgap subcell has a polymer blend PM6:PY-IT. Standalone and tandem cells are simulated under AM1.5G solar radiation, and the simulation results are compared with measurements to calibrate the physical models and material parameters revealing PCE values of 10.11%, 16.50%, and 17.58% for the front, rear, and tandem cells, respectively. Next, we assessed the performance characteristics of the three cells under a white LED environment for different color temperatures and light intensities. The results showed a superior performance of the front cell, while a deterioration in the performance was observed for the tandem cell, reflecting in a lower PCE of 16.22% at a color temperature of 2900 K. Thus, an optimized tandem for outdoor applications was not suitable for indoor conditions. In order to alleviate this issue, we propose designing the tandem for indoor lightening by an appropriate choice of thicknesses of the top and bottom absorber layers in order to achieve the current matching point. Reducing the top absorber thickness while slightly increasing the bottom thickness resulted in a higher PCE of 27.80% at 2900 K.
Subject
Polymers and Plastics,General Chemistry
Reference37 articles.
1. A road map for transformation from conventional to photovoltaic energy generation and its challenges;Zekry;J. King Saud Univ.-Eng. Sci.,2020
2. From Crystalline to Low-cost Silicon-based Solar Cells: A Review;Okil;Silicon,2021
3. Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%;Yoshikawa;Nat. Energy,2017
4. Salem, M.S., Zekry, A., Shaker, A., and Abouelatta, M. (2016, January 5–10). Design and simulation of proposed low cost solar cell structures based on heavily doped silicon wafers. Proceedings of the 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC), Portland, OR, USA.
5. High performance hybrid silicon micropillar solar cell based on light trapping characteristics of Cu nanoparticles;Zhang;AIP Adv.,2018
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献