Heat Transfer Efficiency and pMDI Curing Behavior during Hot-Pressing Process of Tea Oil Camellia (Camellia Oleifera Abel.) Shell Particleboard

Author:

Choupani Chaydarreh Kamran12,Li Yongtao2,Lin Xiuyi1,Zhang Weiwei1,Hu Chuanshuang1ORCID

Affiliation:

1. College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China

2. College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China

Abstract

The use of agricultural biomass composites as new construction and building materials has grown rapidly in recent decades. Considering that energy consumption is one of the most important factors in production, the aim of this work is to examine how heat transfer is affected at various ratios and combinations of three-layer tea oil camellia shell (TOCS) based particleboard with the purpose of creating a mat-forming structure, which has the best physical and mechanical properties for furniture and construction use in a dry environment and consumes the least amount of energy. Additionally, it investigated how raw materials type affects the curing process of polymeric methylene diisocyanate (pMDI) using differential scanning calorimetry (DSC). According to the obtained data, the centerline temperature could reach a maximum of 125 °C after 3 min regardless of the materials or combinations, while the pMDI curing time was 100–110 °C. The results demonstrated that efficient heat transfer could help resin polymerization and improve panel properties. The effect of raw materials on the curing behavior of resin indicated that TOCS particles somehow caused more heat reactions at the curing point. It appeared that particleboard with a ratio of 40% commercial wood particles in the surface layers and 50% TOCS particles (mesh size: −3 + 14) in the core layer with a modulus of rupture (MOR) of 11.29 N/mm2 and internal bonding (IB) of 0.78 N/mm2 has the best properties and met EN 312: 2010 standard requirements for particleboard P2.

Funder

National Natural Science and Foundation of China

Bureau of Guangdong Forestry

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3