Affiliation:
1. Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
Abstract
In this work, acid-functionalized multiwalled carbon (MWCNTs–CO2H) nanotube was successfully functionalized with a heterocyclic scaffold, namely benzimidazole, to give novel functionalized multiwalled carbon nanotubes (BI@MWCNTs). Then, FTIR, XRD, TEM, EDX, Raman spectroscopy, DLS, and BET analyses were used to characterize the synthesized BI@MWCNTs. The effectiveness of the adsorption of two heavy metal ions, Cd2+ and Pb2+, in single metal and mixed metal solutions on the prepared material was investigated. Influencing parameters for the adsorption method, for example duration, pH, starting metal concentration, and BI@MWCNT dosage, were examined for both metal ions. Moreover, adsorption equilibrium isotherms fit with the Langmuir and Freundlich models perfectly, while the intra-particle diffusion models provide pseudo-second order adsorption kinetics. The adsorption of Cd2+ and Pb2+ ions onto BI@MWCNTs revealed an endothermic and a spontaneous method with great affinity as a result of the negative values of Gibbs free energy (ΔG) and the positive values of enthalpy (ΔH) and entropy (ΔS). Both Pb2+ and Cd2+ ions were completely eliminated from aqueous solution (100 and 98%, respectively) using the prepared material. Additionally, BI@MWCNTs have a high adsorption capacity and were regenerated in a simple way and reused for six cycles, which make them a cost-effective and efficient absorbent for the removal of such heavy metal ions from wastewater.
Funder
Deputyship for research and innovation, Mistry of education in Saudi Arabia
Subject
Polymers and Plastics,General Chemistry
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献