Bifurcated Asymmetric Field Flow Fractionation of Nanoparticles in PDMS-Free Microfluidic Devices for Applications in Label-Free Extracellular Vesicle Separation

Author:

Priedols Miks1,Paidere Gunita2,Santos Cristina Bajo1,Miscenko Antons1ORCID,Bergmanis Romualds Gerulis1,Spule Arnita34,Bekere Beate1ORCID,Mozolevskis Gatis2,Abols Arturs1,Rimsa Roberts2ORCID

Affiliation:

1. Latvian Biomedical Research and Study Centre, Ratsupites Str. 1, k-1, LV-1067 Riga, Latvia

2. Institute of Solid-State Physics, University of Latvia, 8 Kengaraga Str., LV-1063 Riga, Latvia

3. Cellbox Labs LLC, 8 Kengaraga Str., LV-1063 Riga, Latvia

4. Faculty of Materials Science and Applied Chemistry, Riga Technical University, LV-1048 Riga, Latvia

Abstract

Extracellular vesicles are small membrane-bound structures that are released by cells and play important roles in intercellular communication garnering significant attention in scientific society recently due to their potential as diagnostic and therapeutic tools. However, separating EVs from large-volume samples remains a challenge due to their small size and low concentration. In this manuscript, we presented a novel method for separating polystyrene beads as control and extracellular vesicles from large sample volumes using bifurcated asymmetric field flow fractionation in PDMS-free microfluidic devices. Separation characteristics were evaluated using the control system of polystyrene bead mix, which offers up to 3.7X enrichment of EV-sized beads. Furthermore, in the EV-sample from bioreactor culture media, we observed a notable population distribution shift of extracellular vesicles. Herein presented novel PDMS-free microfluidic device fabrication protocol resulted in devices with reduced EV-loss compared to size-exclusion columns. This method represented an improvement over the current state of the art in terms of EV separation from large sample volumes through the use of novel field flow fractionation design.

Funder

Latvian Council of Science

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3