Mechanical Properties and Durability of Geopolymer Recycled Aggregate Concrete: A Review

Author:

Zhang Peng1ORCID,Sun Xiaoyao1,Wang Fei1,Wang Juan1

Affiliation:

1. Yellow River Laboratory, Zhengzhou University, Zhengzhou 450001, China

Abstract

Geopolymer recycled aggregate concrete (GPRAC) is a new type of green material with broad application prospects by replacing ordinary Portland cement with geopolymer and natural aggregates with recycled aggregates. This paper summarizes the research about the mechanical properties, durability, and microscopic aspects of GPRAC. The reviewed contents include compressive strength, elastic modulus, flexural strength, splitting tensile strength, freeze–thaw resistance, abrasion resistance, sulfate corrosion resistance, and chloride penetration resistance. It is found that GPRAC can be made to work better by changing the curing temperature, using different precursor materials, adding fibers and nanoparticles, and setting optimal mix ratios. Among them, using multiple precursor materials in synergy tended to show better performance compared to a single precursor material. In addition, using modified recycled aggregates, the porosity and water absorption decreased by 18.97% and 25.33%, respectively, and the apparent density was similar to that of natural aggregates. The current results show that the performance of GPRAC can meet engineering requirements. In addition, compared with traditional concrete, the use of GPRAC can effectively reduce carbon emissions, energy loss, and environmental pollution, which is in line with the concept of green and low-carbon development in modern society. In general, GPRAC has good prospects and development space. This paper reviews the effects of factors such as recycled aggregate admixture and curing temperature on the performance of GPRAC, which helps to optimize the ratio design and curing conditions, as well as provide guidance for the application of recycled aggregate in geopolymer concrete, and also supply theoretical support for the subsequent application of GPRAC in practical engineering.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Henan of China

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3