Study of the Compressive Properties of Heavy Calcium Carbonate-Reinforced Epoxy Composite Spheres (HC-R-EMS) Composite Lightweight Concrete

Author:

Ma Rong1,Cao Zheng1,Jiang Tao1ORCID,Wang Ying1,Shi Shanshan1,Li Wenge1,Zhao Yuantao1,Zhong Ning2,Shi Danda2,Wu Xinfeng23ORCID

Affiliation:

1. Merchant Marine College, Shanghai Maritime University, Shanghai 201306, China

2. College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China

3. School of Energy and Materials, Shanghai Polytechnic University, Shanghai 201209, China

Abstract

Lightweight concrete is one of the effective means to solve the problems of structural component weight, energy efficiency, and fire safety in modern civil engineering. Heavy calcium carbonate-reinforced epoxy composite spheres (HC-R-EMS) were prepared by the ball milling method, and HC-R-EMS, cement, and hollow glass microspheres (HGMS) were mixed into the mold by the molding method to prepare composite lightweight concrete. The relationship between the HC-R-EMS volumetric fraction, the initial inner diameter of the HC-R-EMS, the number of layers of HC-R-EMS, the HGMS volume ratio, the basalt fiber length and content, and the multi-phase composite lightweight concrete density and compressive strength was studied. The experimental results show that the density of the lightweight concrete ranges between 0.953–1.679 g/cm3 and the compressive strength ranges between 1.59–17.26 MPa, where the volume fraction of HC-R-EMS is 90%, the initial internal diameter is 8–9 mm, and the number of layers of HC-R-EMS is three. The lightweight concrete can meet the requirements of high strength (12.67 MPa) and low density (0.953 g/cm3). In addition, the addition of basalt fiber (BF) can effectively improve the compressive strength of the material without changing the density of the material. From a micro-level perspective, HC-R-EMS is closely combined with the cement matrix, which is conducive to increasing the compressive strength of concrete. Basalt fibers connect the matrix into a network, improving the maximum limit force of the concrete.

Funder

Special Fund of the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3