TM-Free and TM-Catalyzed Mechanosynthesis of Functional Polymers

Author:

Al-Ithawi Wahab12,Khasanov Albert1ORCID,Kovalev Igor1ORCID,Nikonov Igor13ORCID,Platonov Vadim1,Kopchuk Dmitry13,Santra Sougata1,Zyryanov Grigory13,Ranu Brindaban14

Affiliation:

1. Chemical Engineering Institute, Ural Federal University, 19 Mira St., 620002 Yekaterinburg, Russia

2. Energy and Renewable Energies Technology Center, University of Technology—Iraq, Baghdad 10066, Iraq

3. I. Ya. Postovsky Institute of Organic Synthesis of RAS (Ural Division), 22/20 S. Kovalevskoy/Akademicheskaya St., 620219 Yekaterinburg, Russia

4. School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India

Abstract

Mechanochemically induced methods are commonly used for the depolymerization of polymers, including plastic and agricultural wastes. So far, these methods have rarely been used for polymer synthesis. Compared to conventional polymerization in solutions, mechanochemical polymerization offers numerous advantages such as less or no solvent consumption, the accessibility of novel structures, the inclusion of co-polymers and post-modified polymers, and, most importantly, the avoidance of problems posed by low monomer/oligomer solubility and fast precipitation during polymerization. Consequently, the development of new functional polymers and materials, including those based on mechanochemically synthesized polymers, has drawn much interest, particularly from the perspective of green chemistry. In this review, we tried to highlight the most representative examples of transition-metal (TM)-free and TM-catalyzed mechanosynthesis of some functional polymers, such as semiconductive polymers, porous polymeric materials, sensory materials, materials for photovoltaics, etc.

Funder

Council for Grants of the President of the Russian Federation

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3