Application of Multi-Layered Temperature-Responsive Polymer Brushes Coating on Titanium Surface to Inhibit Biofilm Associated Infection in Orthopedic Surgery

Author:

Choi Sookyung,Lee HyeonjoonORCID,Hong Ran,Jo Byungwook,Jo SuenghwanORCID

Abstract

Infection associated with biomedical implants remains the main cause of failure, leading to reoperation after orthopedic surgery. Orthopedic infections are characterized by microbial biofilm formation on the implant surface, which makes it challenging to diagnose and treat. One potential method to prevent and treat such complications is to deliver a sufficient dose of antibiotics at the onset of infection. This strategy can be realized by coating the implant with thermoregulatory polymers and triggering the release of antibiotics during the acute phase of infection. We developed a multi-layered temperature-responsive polymer brush (MLTRPB) coating that can release antibiotics once the temperature reaches a lower critical solution temperature (LCST). The coating system was developed using copolymers composed of diethylene glycol methyl ether methacrylate and 2-hydroxyethyl methacrylate by alternatively fabricating monomers layer by layer on the titanium surface. LCST was set to the temperature of 38–40 °C, a local temperature that can be reached during infection. The antibiotic elution characteristics were investigated, and the antimicrobial efficacy was tested against S. aureus species (Xen29 ATCC 29 213) using one to four layers of MLTRPB. Both in vitro and in vivo assessments demonstrated preventive effects when more than four layers of the coating were applied, ensuring promising antibacterial effects of the MLTRPB coating.

Funder

Korean National Research Foundation

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3