On the Design of Aqueous Emulsions of Colophony Resin

Author:

Ingrez Isa B. D.1ORCID,Ferreira Paula C. N.12ORCID,Gameiro Davide3,Duarte Belmiro P. M.12ORCID

Affiliation:

1. Instituto Politécnico de Coimbra, Instituto Superior de Engenharia de Coimbra, Rua Pedro Nunes, Quinta da Nora, 3030-199 Coimbra, Portugal

2. Centro de Investigação em Engenharia dos Processos Químicos e dos Produtos da Floresta, Universidade de Coimbra, Rua Sílvio Lima, Pólo II, 3030-790 Coimbra, Portugal

3. Kemi Pine Rosins Portugal, S.A., Zona Industrial de Cantanhede, Lote 122, 3060-197 Cantanhede, Portugal

Abstract

Companies regularly face market pressure to develop products faster but they also need to simultaneously incorporate technological constraints, sustainability trends, and customer requirements into their designs, which requires the use of systematic procedures. Firms that exploit natural resources and convert them into high-value products are among them. However, the literature on the application of such systematic approaches to products of this type remains scarce, as they often requrire extensive experimental plans involving the testing and optimization of multiple formulations. Here, we propose a systematic approach to the design of pine-resin-in-water emulsions, which can be used to fabricate pressure-sensitive adhesives. The strategy is customer-centric in the sense that the customers’ specifications are integrated into the decision-making tool used to assess the quality of the formulations obtained through experiments. This tool uses loss functions to assess satisfaction with individual quality characteristics and multi-attribute decision-making methods to integrate them into an overall quality metric. Our framework is aligned with industrial practices and consists of three sequential stages: (i) screening of primary factors; (ii) optimization of secondary factors; and (iii) assessment of the experimental repeatability of the formulations. In each of these stages, the decision-making tool is used to “drive” the process of finding the optimal formulation.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3