Proposal of Evaluation Method for Crack Propagation Behaviors of Second-Generation Acrylic Adhesives under Mode I Static Loading

Author:

Ogawa Yuki12ORCID,Naito Kimiyoshi13ORCID,Harada Keisuke14,Oguma Hiroyuki1

Affiliation:

1. Polymer Matrix Hybrid Composite Materials Group, Research Center for Structural Materials, National Institute of Materials Science, 1-2-1 Sengen, Tsukuba 305-0047, Japan

2. Department of Mechanical Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan

3. Department of Aerospace Engineering, Tohoku University, 6-6-1 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8579, Japan

4. Naval Platform and Signature Technology Division, Naval Systems Research Center, Acquisition, Technology & Logistics Agency, 2-2-1 Nakameguro, Meguro-ku, Tokyo 153-8630, Japan

Abstract

Second-generation acrylic (SGA) adhesives, possessing high strength and toughness, are applicable in automotive body structures. Few studies have considered the fracture toughness of the SGA adhesives. This study entailed a comparative analysis of the critical separation energy for all three SGA adhesives and an examination of the mechanical properties of the bond. Loading-unloading test was performed to evaluate crack propagation behaviors. In the loading–unloading test of the SGA adhesive with high ductility, plastic deformation was observed in the steel adherends; the arrest load dominated the propagation and non-propagation of crack for adhesive. The critical separation energy of this adhesive was assessed by the arrest load. In contrast, for the SGA adhesives with high tensile strength and modulus, the load suddenly decreased during loading, and the steel adherend was not plastically deformed. The critical separation energies of these adhesives were assessed using the inelastic load. The critical separation energies for all the adhesives were higher for thicker adhesive. Particularly, the critical separation energies of the highly ductile adhesives were more affected by the adhesive thickness than highly strength adhesives. The critical separation energy from the analysis using the cohesive zone model agreed with the experimental results.

Funder

New Energy and Industrial Technology Development Organization

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3