Effects of Different Coatings, Primers, and Additives on Corrosion of Steel Rebars

Author:

Afshar Alireza1,Jahandari Soheil23ORCID,Rasekh Haleh4,Rahmani Aida23,Saberian Mohammad5

Affiliation:

1. Department of Civil and Environmental Engineering, George Mason University, Fairfax, VA 22030, USA

2. Centre for Infrastructure Engineering, Western Sydney University, Penrith, NSW 2751, Australia

3. Chem Concrete Pty Ltd., Seven Hills, NSW 2147, Australia

4. School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia

5. School of Engineering, RMIT University, Melbourne, VIC 3000, Australia

Abstract

In this research, methods of increasing the corrosion resistance of reinforced concrete were experimentally investigated. The study used silica fume and fly ash at optimized percentages of 10 and 25% by cement weight, polypropylene fibers at a ratio of 2.5% by volume of concrete, and a commercial corrosion inhibitor, 2-dimethylaminoethanol (Ferrogard 901), at 3% by cement weight. The corrosion resistance of three types of reinforcements, mild steel (STt37), AISI 304 stainless steel, and AISI 316 stainless steel, was investigated. The effects of various coatings, including hot-dip galvanizing, alkyd-based primer, zinc-rich epoxy primer, alkyd top coating, polyamide epoxy top coating, polyamide epoxy primer, polyurethane coatings, a double layer of alkyd primer and alkyd top coating, and a double layer of epoxy primer and alkyd top coating, were evaluated on the reinforcement surface. The corrosion rate of the reinforced concrete was determined through results of accelerated corrosion and pullout tests of steel-concrete bond joints and stereographic microscope images. The samples containing pozzolanic materials, the corrosion inhibitor, and a combination of the two showed significant improvement in corrosion resistance by 7.0, 11.4, and 11.9 times, respectively, compared to the control samples. The corrosion rate of mild steel, AISI 304, and AISI 316 decreased by 1.4, 2.4, and 2.9 times, respectively, compared to the control sample; however, the presence of polypropylene fibers reduced the corrosion resistance by 2.4 times compared to the control.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3