WZB117 Decorated Metformin-Carboxymethyl Chitosan Nanoparticles for Targeting Breast Cancer Metabolism

Author:

De Anindita1ORCID,Wadhwani Ashish2ORCID,Sauraj 1,Roychowdhury Parikshit3,Kang Ji Hee1,Ko Young Tag1ORCID,Kuppusamy Gowthamarajan3

Affiliation:

1. College of Pharmacy, Gachon Institute of Pharmaceutical Science, Gachon University, Incheon 21936, Republic of Korea

2. Faculty of Health Sciences, School of Pharmacy, JSS Academy of Higher Education and Research, Mauritius, Droopnath Ramphul St, Vacoas-Phoenix 73304, Mauritius

3. Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty 643001, Tamil Nadu, India

Abstract

The “Warburg effect” provides a novel method for treating cancer cell metabolism. Overexpression of glucose transporter 1 (GLUT1), activation of AMP-activated protein kinase (AMPK), and downregulation of mammalian target of rapamycin (mTOR) have been identified as biomarkers of abnormal cancer cell metabolism. Metformin (MET) is an effective therapy for breast cancer (BC), but its efficacy is largely reliant on the concentration of glucose at the tumor site. We propose a WZB117 (a GLUT1 inhibitor)-OCMC (O-carboxymethyl-chitosan)-MET combo strategy for simultaneous GLUT1 and mTOR targeting for alteration of BC metabolism. WZB117 conjugated polymeric nanoparticles were 225.67 ± 11.5 nm in size, with a PDI of 0.113 ± 0.16, and an encapsulation of 72.78 6.4%. OCMC pH-dependently and selectively releases MET at the tumor site. MET targets the mTOR pathway in cancer cells, and WZB117 targets BCL2 to alter GLUT1 at the cancer site. WZB117-OCMC-MET overcomes the limitations of MET monotherapy by targeting mTOR and BCL2 synergistically. WZB117-OCMC-MET activates AMPK and suppresses mTOR in a Western blot experiment, indicating growth-inhibitory and apoptotic characteristics. AO/EB and the cell cycle enhance cellular internalization as compared to MET alone. WZB117-OCMC-MET affects cancer cells’ metabolism and is a promising BC therapeutic strategy.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3