Fully Flexible Covalent Organic Frameworks for Fluorescence Sensing 2,4,6-Trinitrophenol and p-Nitrophenol

Author:

Zhu Hai12,Geng Tong-Mou2,Tang Kai-Bin1

Affiliation:

1. Department of Chemistry, University of Science and Technology of China, Hefei 230026, China

2. Anhui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials, School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing 246011, China

Abstract

Nitrophenols are important nitroaromatic compounds, both important environmental pollutants and dangerous explosives, posing a devastating danger and pollution threat to humans. It is vital to detect efficiently trace nitrophenols in the environment. In this contribution, a series of fully flexible cyclotriphosphazene-based COFs (FFCP COFs: HDADE, HBAPB, and HBPDA), prepared with both a flexible knot and flexible linkers of different lengths, were used for sensing 2,4,6-trinitrophenol (TNP) and p-nitrophenol (p-NP) in real time with excellent sensitivity and selectivity. The quenching constants of HDADE by TNP, HBAPB, and HBPDA by p-NP are 6.29 × 104, 2.17 × 105, and 2.48 × 105 L·mol–1, respectively. The LODs of TNP and p-NP are 1.19 × 10−11, 6.91 × 10−12, and 6.05 × 10−12 mol·L−1. Their sensitivities increase with the linker length, which is better than the corresponding COFs composed of rigid linkers. There is only a photoinduced electron transfer mechanism in the fluorescence quenching of HBPDA by p-NP. Meanwhile, the mechanisms of photoinduced charge transfer and resonance energy transfer exist in the fluorescence quenching of HDADE by TNP and the fluorescence quenching of HBAPB by p-NP.

Funder

National Natural Science Foundation of China

Natural Science Foundation of the Anhui Education Department

Open Fund of Anhui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3