Effect of Blade Diameter on the Performance of Horizontal-Axis Ocean Current Turbine

Author:

Ahmed Zaib Mansoor,Waqar Arbaz,Abbas Shoukat,Badshah SaeedORCID,Ahmad Sajjad,Amjad MuhammadORCID,Rahimian Koloor Seyed SaeidORCID,Eldessouki MohamedORCID

Abstract

The horizontal-axis ocean current turbine under investigation is a three-blade rotor that uses the flow of water to rotate its blade. The mechanical energy of a turbine is converted into electrical energy using a generator. The horizontal-axis ocean current turbine provides a nongrid robust and sustainable power source. In this study, the blade design is optimized to achieve higher efficiency, as the blade design of the hydrokinetic turbine has a considerable effect on its output efficiency. All the simulations of this turbine are performed on ANSYS software, based on the Reynolds Averaged Navier–Stokes (RANS) equations. Three-dimensional (CFD) simulations are then performed to evaluate the performance of the rotor at a steady state. To examine the turbine’s efficiency, the inner diameter of the rotor is varied in all three cases. The attained result concludes that the highest Cm value is about 0.24 J at a tip-speed ratio (TSR) of 0.8 at a constant speed of 0.7 m/s. From 1 TSR onward, a further decrease occurs in the power coefficient. That point indicates the optimum velocity at which maximum power exists. The pressure contour shows that maximum dynamic pressure exists at the convex side of the advancing blade. The value obtained at that place is −348 Pa for case 1. When the dynamic pressure increases, the power also increases. The same trend is observed for case 2 and case 3, with the same value of optimum TSR = 0.8.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference30 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3