Abstract
In this study, an operation strategy is introduced for distributed energy resources (DERs) in reconfigurable microgrids (MGs) to improve voltage profiles, minimize power losses, and boost the system performance. The proposed methodology aims to minimize power loss and energy not supplied (ENS) in MGs with an intelligent share of DERs and network reconfiguration in grid-connected and islanded modes. Due to the inherent uncertain nature of renewable DERs, these sources’ power output is considered as an uncertain parameter, and its effect on the system characteristics is analyzed. The state-of-the-art information gap decision theory (IGDT) approach is utilized to explore different decision-making strategies in the energy scheduling of reconfigurable MGs to deal with such uncertainty. To validate the effectiveness of the proposed method, the IEEE 33-bus radial system is utilized as the test MG. The simulation results show the importance of energy storage systems and reconfiguration in dealing with uncertainty and improving system reliability.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献