Study on Fractal Characteristics of Evolution of Mining-Induced Fissures in Karst Landform

Author:

Gou RentaoORCID,Jiang Chengyu,Liu Yong,Wang Chen,Li Yuanlin

Abstract

The karst landscape is widespread in the southern region of China. As a result of underground mining activities, the original stress equilibrium is disrupted, causing the redistribution of stress in the overlying rock layer, inducing the longitudinal fracture of mining to expand and penetrate upwards, resulting in the rupture and destabilization of the karst cave roof, thus triggering a series of engineering problems such as karst cave collapse, landslide, the discontinuous deformation of the ground surface, and soil erosion. In order to study the evolutionary characteristics of buried rock fissures in shallow coal seam mining under the karst landform, taking the shallow coal seam with the typical karst cave development landform in Guizhou as the engineering background, based on the similarity simulation experiment and fractal theory, the evolution law of buried rock fissures and network fractal characteristics under the disturbance of the karst landform mining are analyzed. The research shows that the mining-induced fracture reaches the maximum development height of 61 m on the left side of the cave, and the two sides of the cave produce uncoordinated deformation. The separation fracture below the cave is relatively developed, and the overall distribution pattern of the cave rock fracture network presents a “ladder” shape. The correlation coefficient of the fractal dimension of the rock fractures under different advancing distances is more than 0.90, and the rock fracture network under the karst landform has high self-similarity. The variation of fractal dimension with the advancing degree of the working face can be divided into four stages. The first and second stages show an exponential growth trend, and the third and fourth stages show linear changes with slopes of 0.0007 and 0.0014, respectively. The fluctuation of the fractal dimension is small. The periodic weighting of the upper roof in the cave-affected zone is frequent, the fragmentation of the fractured rock mass becomes larger, and the fractures of the upper rock mass are relatively developed. The research results can provide a reference for the study on the evolution law of mining-induced rock fissures under similar karst landforms.

Funder

National Natural Science Foundation of China

Guizhou Provincial Science and Technology Foundation

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference44 articles.

1. Landslides Distribution and Disaster Analysis in Typical Karst Areas of China-Guizhou as an Example;Zhao,2014

2. Geological Theory and Technology for Coalbed Methane Development with Thin and Medium Coal Seam Zones in Guizhou;Xu,2012

3. The Fractal Geometry of Nature;Mandelbrot,1982

4. Fractal geometry and fracture of rock;Xie;Rock Soil Mech.,1988

5. Fractal study of crack scales distribution in coalmass;Kang;J. China Coal Soc.,1995

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3