Author:
Hou ,Li ,Yang ,Wang ,Chang ,Yu ,Yuan ,Wang ,Chen ,Tang ,Zhu
Abstract
Light is one of the most important abiotic factors for most plants, which affects almost all growth and development stages. In this study, physiological indicators suggest that the application of exogenous Ca2+ improves photosynthesis and changes phytohormone levels. Under weak light, photosynthetic parameters of the net photosynthetic rate (PN), stomatal conductance (Gs), and transpiration rate (Tr) decreased; the antioxidation systems peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT) reduced; the degrees of malondialdehyde (MDA), H2O2, and superoxide anion (O2−) free radical damage increased; while exogenous Ca2+ treatment was significantly improved. RNA-seq analysis indicated that a total of 13,640 differently expressed genes (DEGs) were identified and 97 key DEGs related to hormone, photosynthesis, and calcium regulation were differently transcribed. Gene ontology (GO) terms and Kyoto encyclopedia of genes and genomes (KEGG) pathway analyses, plant hormone signal transduction, photosynthesis, carbon metabolism, and phenylpropanoid biosynthesis were significantly enriched. Additionally, quantitative real-time PCR (qRT-PCR) analysis confirmed some of the key gene functions in response to Ca2+. Overall, these results provide novel insights into the complexity of Ca2+ to relieve injuries under weak light, and they are helpful for potato cultivation under weak light stress.
Funder
Anhui Provincial Natural Science Foundation
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献