Extension Mechanism of Water-Conducting Cracks in the Thick and Hard Overlying Strata of Coal Mining Face

Author:

Wei Dong12,Gu Helong2,Wang Chungang1,Wang Hao2,Zhu Haoyu2,Guo Yuyang2

Affiliation:

1. Shanxi Yanchang Petroleum and Mining Co., Ltd., Yulin 710054, China

2. College of Energy Engineering, Xi’an University of Science and Technology, Xi’an 710054, China

Abstract

It is of great significance for coal safety production and water resource protection in the Yuheng mining area to master the evolution law of water-conducting fractures under the condition of thick and hard overburden. This research focuses on the 2102 fully mechanized mining face in the Balasu Coal Mine as the research background. The fracture evolution and strata movement characteristics in thick and hard overlying strata are simulated and analyzed by combining numerical simulation with physical simulation, and the formation mechanism of a water-conducting fracture in the overlying strata is revealed and verified by field measurements of the development height of “two zones”. The results show that the anisotropy of fracture propagation in low-position overlying strata is high, and the fracture propagation in high-position overlying strata is mainly vertical, which indicates characteristics of leapfrog development. The number and development height of fractures undergo the change–growth process of “slow–rapid–uniform”. Multiple rock strata together form a complex force chain network with multiple strong chain arches. The local stress concentration leads to the initiation of micro-cracks in contact fractures, and the cracks gradually penetrate from bottom to top and then the strong chain arches are broken. The water-conducting cracks in overlying strata show a dynamic expansion process of “local micro-cracks–jumping cracks–through cracks–water-conducting cracks”. The fracture between the caving zone and fracture zone presents obvious layered characteristics, the overall shape of the water-conducting fracture zone is “saddle-shaped”, and the maximum development height lags behind the coal mining face by about 180 m. Through the observation of water injection leakage and borehole TV observation of three boreholes under underground construction, combined with the results of water pressure tests, it is comprehensively determined that the height of the water-conducting fracture zone is 103.68~107.58, and the fracture–production ratio is 31.42~32.60, which is basically consistent with the results of numerical simulation and physical simulation. This research provides theoretical guidance and a scientific basis for coal mine water disaster prevention under similar geological conditions.

Publisher

MDPI AG

Reference29 articles.

1. Chacteristics of water disaster, evaluation methods and exploration direction for control-ling ground water in deep mining;Li;J. China Coal Soc.,2019

2. Reflections on the energy status of coal bodies and green mining in China;Wang;J. China Coal,2020

3. Progress, problems and prospects of prevention and control technology of mine water and reutilization in China;Wu;J. China Coal Soc.,2014

4. Analysis on height of “two zones” under subcritical mining in shallow coal seam with hard roof;Tan;J. Min. Saf. Eng.,2017

5. Dynamic mechanical mechanism and optimization approach of roadway surrounding coal water infusion for dynamic disaster prevention;Helong;Measurement,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3