DFT Analysis of NO Adsorption on the Undoped and Ce-Doped LaCoO3 (011) Surface

Author:

Li XiaochenORCID,Gao HongweiORCID

Abstract

Using the density functional theory (DFT) method, we investigated the adsorption of NO on the undoped and Ce-doped LaCoO3 (011) surface. According to our calculations, the best adsorption site is not changed after Ce doping. When the NO molecule is adsorbed on the perfect LaO-terminated LaCoO3 (011) surface, the most stable adsorption site is hollow-top, which corresponds to the hollow-NO configuration in our study. After the substitution of La with Ce, the adsorption energy of hollow-NO configuration is increased. For the perfect CoO2-terminated LaCoO3 (011) surface, it is found that Co-NO configuration is the preferential adsorption structure. Its adsorption energy can also be enhanced after Ce doping. When NO molecule is adsorbed on the undoped and Ce-doped LaO-terminated LaCoO3 (011) surface with hollow-NO configuration, it serves as the acceptor and electrons transfer from the surface to it in the adsorption process. On the contrary, for the Co-NO configuration of undoped and Ce-doped CoO2-terminated LaCoO3 (011) surface, NO molecule becomes the donor and loses electrons to the surface.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3