Comparative Analysis among Single-Stage, Dual-Stage, and Triple-Stage Actuator Systems Applied to a Hard Disk Drive Servo System

Author:

Hossain Alamgir,Rahman Md. Arifur

Abstract

In modern times, the design and optimization of different actuator systems for controlling a high-precision position control system represent a popular interdisciplinary research area. Initially, only single-stage actuator systems were used to control most of the motion control applications. Currently, dual-stage actuation systems are widely applied to high-precision position control systems such as hard disk drive (HDD) servo systems. In the dual-stage system, a voice coil motor (VCM) actuator is used as the primary stage and a piezoelectric micro-actuator is applied as the secondary stage. However, a dual-stage control architecture does not show significant performance improvements to achieve the next-generation high-capacity HDD servo system. Research continues on how to fabricate a tertiary actuator for a triple-stage HDD servo system. A thermal positioning controller (TPC) actuator is considered promising as the tertiary stage. The triple-stage system aims to achieve greater bandwidth, track density, and disk speed, with minimum sensitivity and greater error minimization. In this work, these three actuation systems with different combinations of proportional plus integral (PI), proportional plus derivative (PD), and proportional plus integral plus derivative (PID) controller, lag-lead controller, lag filter, and inverse lead plus a PI controller were designed and analyzed through simulation to achieve high-precision positioning. The comparative analyses were done on the MATLAB/Simulink simulation platform.

Publisher

MDPI AG

Subject

Control and Optimization,Control and Systems Engineering

Reference42 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3