Construction of Novel Electro-Fenton Systems by Magnetically Decorating Zero-Valent Iron onto RuO2-IrO2/Ti Electrode for Highly Efficient Pharmaceutical Wastewater Treatment

Author:

Deng Miao,Wu Keming,Yang TaoORCID,Yu DeyouORCID,Liu Gaojie,Gong Shuai,Sun Dongni,Petru MichalORCID

Abstract

The Electro-Fenton (E-Fenton) technique has shown great potential in wastewater treatment, while the sustainable and continuing supply of Fe2+ remains challenging. Herein, we demonstrate the construction of a novel E-Fenton system by magnetically decorating zero-valent iron (ZVI) onto a RuO2-IrO2/Ti (ZVI-RuO2-IrO2/Ti) electrode for high-efficient treatment of pharmaceutical wastewater, which is considerably refractory and harmful to conventional biological processes. By using ZVI as a durable source of Fe(II) irons, 78.69% of COD and 76.40% of TOC may be rapidly removed by the developed ZVI-RuO2-IrO2/Ti electrode, while the ZVI-RuO2-IrO2/Ti electrode using ZVI only reduces 35.64% of COD under optimized conditions at initial COD and TOC values of 5500 mg/L and 4300 mg/L, respectively. Moreover, the increase in BOD5/COD from 0.21 to 0.52 highlights the enhanced biodegradability of the treated effluent. The analysis of a simultaneously formed precipitation on electrodes suggests that the coagulation process dominated by Fe3+/Fe2+ also plays a non-negligible role in pharmaceutical wastewater treatment. In addition, the monitoring of the evolution of nitrogen elements and the formation of by-products in the E-Fenton process verifies its great capacity toward those organic pollutants found in pharmaceutical wastewater. Our study offers a practical solution for enhancing the performance of E-Fenton systems, and effectively treating refractory pharmaceutical wastewater.

Funder

National Natural Science Foundation of China

European Structural and Investment Funds

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3