An Analysis of Energy Consumption in Railway Signal Boxes

Author:

Kampik Marian1ORCID,Bodzek Krzysztof2ORCID,Piaskowy Anna1ORCID,Pilśniak Adam1,Fice Marcin3ORCID

Affiliation:

1. Department of Measurement Science, Electronics and Control, Faculty of Electrical Engineering, Silesian University of Technology, 44-100 Gliwice, Poland

2. Department of Power Electronics, Faculty of Electrical Engineering, Silesian University of Technology, 44-100 Gliwice, Poland

3. Department of Electrical Engineering and Computer Science, Faculty of Electrical Engineering, Silesian University of Technology, 44-100 Gliwice, Poland

Abstract

This study assessed hourly electricity consumption profiles in railway signal boxes located in Poland. The analyses carried out consisted of assessing the correlation among the hourly demand profile, weather indicators, and calendar indicators, e.g., temperature, cloud cover, day of the week, and month. The analysis allowed us to assess which indicator impacts the energy consumption profile and would be useful when forecasting energy demand. In total, 15 railway signal boxes were selected for analysis and grouped according to three characteristic repeatability profiles. On this basis, six of the signal boxes and one that did not fit into any of the groups were selected for further analysis. Four correlation research methods were selected for analysis: Pearson’s method, Spearman’s method, scatter plots, and distance covariance. The possibility of forecasting electricity consumption based on previously aggregated profiles and determining correlations with indicators was presented. The given indicators vary depending on the facility. Analyses showed different dependencies of the electricity demand profile. The ambient temperature and time of day have the greatest impact on the profile. Regarding the correlation with temperature, the results of the Pearson’s and Spearman’s coefficients ranged from approximately −0.4 to more than −0.8. The highest correlation coefficients were obtained when comparing the demand profile with the previous day. In this case, the Pearson’s and Spearman’s coefficients for all analysed objects range from approximately 0.7 to over 0.9.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3