Green and Efficient Recovery and Optimization of Waste Heat and LNG Cold Energy in LNG-Powered Ship Engines

Author:

Yang Xinglin1,Lei Qiang1,Zou Junhu1,Lu Xiaohui1,Chen Zhenzhen1

Affiliation:

1. School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang 212003, China

Abstract

This study focuses on the Wartsila 9L34DF engine and proposes an integrated system for low-temperature carbon capture using the coupling of cold and hot energy recovery with membrane separation in LNG-powered ships. By utilizing a series dual-pressure organic Rankine cycle (SDPORC) system to recover waste heat from the engine exhaust gases and generate electricity, the system provides power support for the low-temperature carbon capture compression process without consuming additional ship power. To validate the accuracy and reliability of the mathematical model, the simulation results are compared with the literature’s data. Once the model’s accuracy is ensured, the operational parameters of the integrated system are analyzed. Subsequently, working fluid optimization and genetic algorithm sensitive parameter optimization are conducted. Finally, under the optimal operating conditions, the thermodynamic performance and economic evaluation of the integrated system are assessed. The results demonstrate that the net power output of the integrated system is 100.95 kW, with an exergy efficiency of 45.19%. The unit carbon capture cost (UCC) is 14.24 $/ton, and for each unit of consumed LNG, 1.97 kg of liquid CO2 with a concentration of 99.5% can be captured. This integrated system significantly improves the energy utilization efficiency of ships and reduces CO2 emissions.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3