Denoising Masked Autoencoder-Based Missing Imputation within Constrained Environments for Electric Load Data

Author:

Jeong Jaeik1ORCID,Ku Tai-Yeon1,Park Wan-Ki1

Affiliation:

1. Energy ICT Research Section, Electronics and Telecommunications Research Institute, Daejeon 34129, Republic of Korea

Abstract

With recent advancements in data technologies, particularly machine learning, research focusing on the enhancement of energy efficiency in residential, commercial, and industrial settings through the collection of load data, such as heat, electricity, and gas, has gained significant attention. Nevertheless, issues arising from hardware- or network-related problems can result in missing data, necessitating the development of management techniques to mitigate these challenges. Traditional methods for missing imputation face difficulties when operating in constrained environments characterized by short data collection periods and frequent consecutive missing. In this paper, we introduce the denoising masked autoencoder (DMAE) model as a solution to improve the handling of missing data, even in such restrictive settings. The proposed DMAE model capitalizes on the advantages of the denoising autoencoder (DAE), enabling effective learning of the missing imputation process, even with relatively small datasets, and the masked autoencoder (MAE), allowing for learning in environments with a high missing ratio. By integrating these strengths, the DMAE model achieves an enhanced performance in terms of missing imputation. The simulation results demonstrate that the proposed DMAE model outperforms the DAE or MAE significantly in a constrained environment where the duration of the training data is short, less than a year, and missing values occur frequently with durations ranging from 3 h to 12 h.

Funder

Korea Institute of Energy Technology Evaluation and Planning

Ministry of Trade, industry & Energy (MOTIE) of Korea

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3