Feasibility Analysis on Compression-Assisted Adsorption Chiller Using Chlorides for Underground Cold Transportation

Author:

Yu Meng12,Jin Suke12,Zhang Wenyun3,Xia Guangyue4,Liu Baoqin4,Jiang Long3

Affiliation:

1. Special Equipment Safety Supervision and Inspection Institute of Jiangsu Province, Nanjing 210036, China

2. Hydrogen Equipment Product Quality Supervision and Inspection Center of Jiangsu Province, Changzhou 213125, China

3. Institute of Refrigeration and Cryogenics, Zhejiang University, Hangzhou 310027, China

4. Jinan Energy Group Co., Ltd., Jinan 250014, China

Abstract

Thermal-driven refrigeration technologies, e.g., absorption- or adsorption-type, are gathering momentum since they can utilize low-grade heat from industrial, solar or geothermal energy. However, heat sources and end users are usually mismatched, which could lead to potential heat pollution and increased carbon emissions. Long-distance thermal energy transportation is good for district heating and cooling, which is of great significance if it can achieve a high energy-transportation density and low heat loss. In this paper, a compression-assisted chemisorption chiller driven by a low-temperature heat source for cold transportation is initially proposed, which aims to transport liquid ammonia with chemical potential and generate a cooling effect for end users. A feasibility analysis of the compression-assisted chemisorption chiller is preliminarily performed for 2 km cold transportation. The results show that the highest theoretical coefficient of performance and the energy efficiency of the compression-assisted adsorption chiller using a sodium bromide–ammonia working pair can reach 0.46 and 0.25, respectively, when the evaporation temperature is 20 °C. Among the three selected low-temperature salts, ammonium chloride–ammonia shows the best performance, which is up to about 40% higher than those of sodium bromide–ammonia and barium chloride–ammonia. It is demonstrated that compared with common absorption chillers, a compression-assisted adsorption system has a reasonable working efficiency to transport cold energy when the low- or ultralow-temperature heat source, e.g., lower than 60 °C, is required to be utilized.

Funder

National Natural Science Foundation of China

Science and Technology Project of the Jiangsu Province Market Supervision Administration

Open-sharing and Independent Research Project for Large-scale Scientific Instruments of Jiangsu Province

Basic Research Funds for the Central University ‘Innovative Team of Zhejiang University’

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3