Numerical Study of the Influence of Different Bending Shapes on the Heat Transfer Characteristics of Annular Cross Wavy Primary Surface Recuperator (CW-PSR)

Author:

Jiang Huadong1,Chen Fu1,Huang Chonghai2,Yu Jianyang1,Song Yanping1,Zhang Juanshu3

Affiliation:

1. School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150006, China

2. Science and Technology on Thermal Energy and Power Laboratory, Wuhan 430205, China

3. School of Architecture, Harbin Institute of Technology, Harbin 150006, China

Abstract

The cross-wave primary surface recuperator (CW-PSR) is a dependable option as a recuperator for micro gas turbines (MGT). The micro CW-PSR studied in this paper is composed of 171 stacked curved plates, with each plate containing 33 micro heat transfer channels with equivalent diameters of less than 1 mm. In this study, the influence of bending curvature on the thermal performance of CW-PSR plates is investigated through three-dimensional numerical simulation with fluid–solid–thermal coupling. The results indicate that the variation in bending curvature studied can result in a noteworthy 8% difference in the total heat transfer coefficient of CW-PSR plates. A direct correlation between heat transfer capacity and secondary flow strength is derived mathematically, explaining the mechanism by which secondary flow enhances heat transfer. By employing this relationship, a comprehensive analysis of CW-PSR plates with diverse bending curvatures is conducted, effectively showcasing how curvature influences the secondary flow pattern and enhances the channel’s heat transfer capacity. In addition, this paper considers the comprehensive influence of the size parameters of the heat transfer unit and the bending curvature of the heat transfer plate on the heat transfer and flow characteristics of the CW-PSR, and a dominant mathematical expression is obtained, which can be used for the design of similar heat exchangers of the same type.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Heilongjiang Province

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3