Extreme Gradient Boosting Model for Day-Ahead STLF in National Level Power System: Estonia Case Study

Author:

Zhao Qinghe1ORCID,Liu Xinyi1,Fang Junlong1

Affiliation:

1. Electrical Engineering and Information College, Northeast Agricultural University, Harbin 150030, China

Abstract

Short-term power load forecasting refers to the use of load and weather information to forecast the Day-ahead load, which is very important for power dispatch and the establishment of the power spot market. In this manuscript, a comprehensive study on the frame of input data for electricity load forecasting is proposed based on the extreme gradient boosting algorithm. Periodicity was the first of the historical load data to be analyzed using discrete Fourier transform, autocorrelation function, and partial autocorrelation function to determine the key width of a sliding window for an optimization load feature. The mean absolute error (MAE) of the frame reached 52.04 using a boosting model with a 7-day width in the validation dataset. Second, the fusing of datetime variables and meteorological information factors was discussed in detail and determined how to best improve performance. The datetime variables were determined as a form of integer, sine–cosine pairs, and Boolean-type combinations, and the meteorological features were determined as a combination with 540 features from 15 sampled sites, which further decreased MAE to 44.32 in the validation dataset. Last, a training method for day-ahead forecasting was proposed to combine the Minkowski distance to determine the historical span. Under this framework, the performance has been significantly improved without any tuning for the boosting algorithm. The proposed method further decreased MAE to 37.84. Finally, the effectiveness of the proposed method is evaluated using a 200-day load dataset from the Estonian grid. The achieved MAE of 41.69 outperforms other baseline models, with MAE ranging from 65.03 to 104.05. This represents a significant improvement of 35.89% over the method currently employed by the European Network of Transmission System Operators for Electricity (ENTSO-E). The robustness of the proposal method can be also guaranteed with excellent performance in extreme weather and on special days.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3